ImageNet Classification with Multiple Classifiers

نویسندگان

  • Zheyun Feng
  • Jianpeng Xu
چکیده

In this project we proposed an ensemble classifier to classify over 20 thousand images sampled from ImageNet, which originally has over 10 million images. One of the challenge of this classification problem is that the images cannot be precisely represented by one type of features, such as SIFT and GIST. Hence, in this project, we use different kinds of features. Another challenge is that different classification models perform differently on different feature set. Here, we use different classifiers (Kernel Regression and SVM) on different features and ensemble the classification results in a weighting manner. The accuracy of the ensemble classifier outperforms almost all of the baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Optimization of Robust Loss Functions for Weakly-Labeled Image Taxonomies: An ImageNet Case Study

The recently proposed ImageNet dataset consists of several million images, each annotated with a single object category. However, these annotations may be imperfect, in the sense that many images contain multiple objects belonging to the label vocabulary. In other words, we have a multi-label problem but the annotations include only a single label (and not necessarily the most prominent). Such ...

متن کامل

Collaborative Layer-Wise Discriminative Learning in Deep Neural Networks

Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it ...

متن کامل

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

Cascade is a widely used approach that rejects obvious negative samples at early stages for learning better classifier and faster inference. This paper presents chained cascade network (CC-Net). In this CC-Net, the cascaded classifier at a stage is aided by the classification scores in previous stages. Feature chaining is further proposed so that the feature learning for the current cascade sta...

متن کامل

SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet

has been proved to be very effective in feature extraction and representation of images. For image classification problems, this work aim at finding which classifier is more competitive based on high-level deep features of images. In this report, we have discussed the nearest neighbor, support vector machines and extreme learning machines for image classification under deep convolutional activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013